Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Stehlé-Zimmermann multisearch #4001

Merged
merged 5 commits into from
May 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Principia.sln
Original file line number Diff line number Diff line change
Expand Up @@ -682,8 +682,8 @@ Global
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release KSP 1.7.3|x86.Build.0 = Release|Win32
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|Any CPU.ActiveCfg = Release|x64
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|Any CPU.Build.0 = Release|x64
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|x64.ActiveCfg = Release|x64
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|x64.Build.0 = Release|x64
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|x64.ActiveCfg = Release_LLVM|x64
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|x64.Build.0 = Release_LLVM|x64
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|x86.ActiveCfg = Release|Win32
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release_LLVM|x86.Build.0 = Release|Win32
{7CCA653C-2E8F-4FFD-9E9F-BEE590F3EFAB}.Release|Any CPU.ActiveCfg = Release|x64
Expand Down
25 changes: 17 additions & 8 deletions functions/accurate_table_generator.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,32 +31,41 @@ std::vector<cpp_rational> GalExhaustiveMultisearch(
std::vector<AccurateFunction> const& functions,
std::vector<cpp_rational> const& starting_arguments);

// Searches in an interval of radius |T / N| centered on |near_argument|. The
// |polynomials| must be the degree-2 Taylor approximations of the |functions|.
// The argument and function values must be within [1/2, 1[.
// Searches in an interval of radius |T / N| centered on |starting_argument|.
// The |polynomials| must be the degree-2 Taylor approximations of the
// |functions|. The argument and function values must be within [1/2, 1[.
template<std::int64_t zeroes>
absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousSearch(
std::array<AccurateFunction, 2> const& functions,
std::array<AccuratePolynomial<cpp_rational, 2>, 2> const& polynomials,
cpp_rational const& near_argument,
cpp_rational const& starting_argument,
std::int64_t N,
std::int64_t T);

// Performs a search around |near_argument| to find a solution, automatically
// adjusting the interval over which the search happens. The argument and
// function values must be nonzero.
// Performs a search around |starting_argument| to find a solution,
// automatically adjusting the interval over which the search happens. The
// argument and function values must be nonzero.
template<std::int64_t zeroes>
absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousFullSearch(
std::array<AccurateFunction, 2> const& functions,
std::array<AccuratePolynomial<cpp_rational, 2>, 2> const& polynomials,
cpp_rational const& near_argument);
cpp_rational const& starting_argument);

template<std::int64_t zeroes>
std::vector<absl::StatusOr<cpp_rational>>
StehléZimmermannSimultaneousMultisearch(
std::array<AccurateFunction, 2> const& functions,
std::vector<std::array<AccuratePolynomial<cpp_rational, 2>, 2>> const&
polynomials,
std::vector<cpp_rational> const& starting_arguments);

} // namespace internal

using internal::AccuratePolynomial;
using internal::GalExhaustiveMultisearch;
using internal::GalExhaustiveSearch;
using internal::StehléZimmermannSimultaneousFullSearch;
using internal::StehléZimmermannSimultaneousMultisearch;
using internal::StehléZimmermannSimultaneousSearch;

} // namespace _accurate_table_generator
Expand Down
52 changes: 39 additions & 13 deletions functions/accurate_table_generator_body.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ template<std::int64_t zeroes>
absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousSearch(
std::array<AccurateFunction, 2> const& functions,
std::array<AccuratePolynomial<cpp_rational, 2>, 2> const& polynomials,
cpp_rational const& near_argument,
cpp_rational const& starting_argument,
std::int64_t const N,
std::int64_t const T) {
// This implementation follows [SZ05], section 3.1.
Expand All @@ -150,13 +150,13 @@ absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousSearch(
std::array<AccurateFunction, 2> F;
std::array<std::optional<AccuratePolynomial<cpp_rational, 2>>, 2> P;
for (std::int64_t i = 0; i < functions.size(); ++i) {
F[i] = [&functions, i, N, &near_argument](cpp_rational const& t) {
F[i] = [&functions, i, N, &starting_argument](cpp_rational const& t) {
// Here |t| <= |T|.
return N * functions[i](near_argument + t / N);
return N * functions[i](starting_argument + t / N);
};
}
AccuratePolynomial<cpp_rational, 1> const shift_and_rescale(
{near_argument, cpp_rational(1, N)});
{starting_argument, cpp_rational(1, N)});
for (std::int64_t i = 0; i < polynomials.size(); ++i) {
P[i] = N * Compose(polynomials[i], shift_and_rescale);
}
Expand Down Expand Up @@ -303,14 +303,14 @@ absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousSearch(
}
}

return near_argument + t₀ / N;
return starting_argument + t₀ / N;
}

template<std::int64_t zeroes>
absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousFullSearch(
std::array<AccurateFunction, 2> const& functions,
std::array<AccuratePolynomial<cpp_rational, 2>, 2> const& polynomials,
cpp_rational const& near_argument) {
cpp_rational const& starting_argument) {
constexpr std::int64_t M = 1LL << zeroes;
constexpr std::int64_t N = 1LL << std::numeric_limits<double>::digits;

Expand All @@ -322,17 +322,17 @@ absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousFullSearch(
// Scale the argument, functions, and polynomials to lie within [1/2, 1[.
// TODO(phl): Handle an argument that is exactly a power of 2.
std::int64_t argument_exponent;
auto const argument_mantissa =
frexp(static_cast<cpp_bin_float_50>(near_argument), &argument_exponent);
auto const argument_mantissa = frexp(
static_cast<cpp_bin_float_50>(starting_argument), &argument_exponent);
CHECK_NE(0, argument_mantissa);
auto const argument_scale = exp2(-argument_exponent);
cpp_rational const scaled_argument = near_argument * argument_scale;
cpp_rational const scaled_argument = starting_argument * argument_scale;

std::array<AccurateFunction, 2> scaled_functions;
for (std::int64_t i = 0; i < scaled_functions.size(); ++i) {
std::int64_t function_exponent;
auto const function_mantissa =
frexp(functions[i](near_argument), &function_exponent);
frexp(functions[i](starting_argument), &function_exponent);
CHECK_NE(0, function_mantissa);
auto const function_scale = exp2(-function_exponent);
scaled_functions[i] = [argument_scale, function_scale, &functions, i](
Expand All @@ -342,11 +342,11 @@ absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousFullSearch(
}

auto build_scaled_polynomial =
[argument_scale,
&near_argument](AccuratePolynomial<cpp_rational, 2> const& polynomial) {
[argument_scale, &starting_argument](
AccuratePolynomial<cpp_rational, 2> const& polynomial) {
std::int64_t polynomial_exponent;
auto const polynomial_mantissa =
frexp(static_cast<cpp_bin_float_50>(polynomial(near_argument)),
frexp(static_cast<cpp_bin_float_50>(polynomial(starting_argument)),
&polynomial_exponent);
CHECK_NE(0, polynomial_mantissa);
return exp2(-polynomial_exponent) *
Expand Down Expand Up @@ -430,6 +430,32 @@ absl::StatusOr<cpp_rational> StehléZimmermannSimultaneousFullSearch(
}
}

template<std::int64_t zeroes>
std::vector<absl::StatusOr<cpp_rational>>
StehléZimmermannSimultaneousMultisearch(
std::array<AccurateFunction, 2> const& functions,
std::vector<std::array<AccuratePolynomial<cpp_rational, 2>, 2>> const&
polynomials,
std::vector<cpp_rational> const& starting_arguments) {
ThreadPool<absl::StatusOr<cpp_rational>> search_pool(
std::thread::hardware_concurrency());

std::vector<std::future<absl::StatusOr<cpp_rational>>> futures;
for (std::int64_t i = 0; i < starting_arguments.size(); ++i) {
futures.push_back(
search_pool.Add([i, &functions, &polynomials, &starting_arguments]() {
return StehléZimmermannSimultaneousFullSearch<zeroes>(
functions, polynomials[i], starting_arguments[i]);
}));
}

std::vector<absl::StatusOr<cpp_rational>> results;
for (auto& future : futures) {
results.push_back(future.get());
}
return results;
}

} // namespace internal
} // namespace _accurate_table_generator
} // namespace functions
Expand Down
56 changes: 55 additions & 1 deletion functions/accurate_table_generator_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ namespace principia {
namespace functions {
namespace _accurate_table_generator {

using ::testing::AnyOf;
using ::testing::Eq;
using ::testing::Lt;
using ::testing::SizeIs;
Expand Down Expand Up @@ -78,7 +79,7 @@ TEST_F(AccurateTableGeneratorTest, GalSinCos5) {
}
}

TEST_F(AccurateTableGeneratorTest, GalSinCos5Multisearch) {
TEST_F(AccurateTableGeneratorTest, GalMultisearchSinCos5) {
static constexpr std::int64_t index_begin = 17;
static constexpr std::int64_t index_end = 100;
std::vector<cpp_rational> starting_arguments;
Expand Down Expand Up @@ -243,6 +244,59 @@ TEST_F(AccurateTableGeneratorTest, StehléZimmermannFullSinCos15WithScaling) {
}
}

TEST_F(AccurateTableGeneratorTest, StehléZimmermannMultisearchSinCos15) {
FLAGS_v = 0;
google::LogToStderr();
static constexpr std::int64_t index_begin = 17;
static constexpr std::int64_t index_end = 100;
std::vector<cpp_rational> starting_arguments;
std::vector<std::array<AccuratePolynomial<cpp_rational, 2>, 2>> polynomials;
for (std::int64_t i = index_begin; i < index_end; ++i) {
auto const x₀ = i / 128.0;
AccuratePolynomial<cpp_rational, 2> const sin_taylor2(
{cpp_rational(Sin(x₀)),
cpp_rational(Cos(x₀)),
-cpp_rational(Sin(x₀)) / 2},
x₀);
AccuratePolynomial<cpp_rational, 2> const cos_taylor2(
{cpp_rational(Cos(x₀)),
-cpp_rational(Sin(x₀)),
-cpp_rational(Cos(x₀) / 2)},
x₀);
starting_arguments.push_back(x₀);
polynomials.push_back({sin_taylor2, cos_taylor2});
}
auto const xs = StehléZimmermannSimultaneousMultisearch<15>(
{Sin, Cos}, polynomials, starting_arguments);
EXPECT_THAT(xs, SizeIs(index_end - index_begin));
for (std::int64_t i = 0; i < xs.size(); ++i) {
CHECK_OK(xs[i].status());
auto const& x = *xs[i];
EXPECT_THAT(static_cast<double>(x),
RelativeErrorFrom((i + index_begin) / 128.0, Lt(1.3e-7)));
{
std::string const mathematica = ToMathematica(Sin(x),
/*express_in=*/std::nullopt,
/*base=*/2);
std::string_view mantissa = mathematica;
CHECK(absl::ConsumePrefix(&mantissa, "Times[2^^"));
EXPECT_THAT(mantissa.substr(53, 15),
AnyOf(Eq("00000""00000""00000"),
Eq("11111""11111""11111")));
}
{
std::string const mathematica = ToMathematica(Cos(x),
/*express_in=*/std::nullopt,
/*base=*/2);
std::string_view mantissa = mathematica;
CHECK(absl::ConsumePrefix(&mantissa, "Times[2^^"));
EXPECT_THAT(mantissa.substr(53, 15),
AnyOf(Eq("00000""00000""00000"),
Eq("11111""11111""11111")));
}
}
}

#endif

} // namespace _accurate_table_generator
Expand Down