-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStateSampling.cpp
200 lines (175 loc) · 6.96 KB
/
StateSampling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Mark Moll */
#include <ompl/base/SpaceInformation.h>
#include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/samplers/ObstacleBasedValidStateSampler.h>
#include <ompl/geometric/planners/prm/PRM.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/config.h>
#include <iostream>
#include <thread>
namespace ob = ompl::base;
namespace og = ompl::geometric;
/// @cond IGNORE
// This is a problem-specific sampler that automatically generates valid
// states; it doesn't need to call SpaceInformation::isValid. This is an
// example of constrained sampling. If you can explicitly describe the set valid
// states and can draw samples from it, then this is typically much more
// efficient than generating random samples from the entire state space and
// checking for validity.
class MyValidStateSampler : public ob::ValidStateSampler
{
public:
MyValidStateSampler(const ob::SpaceInformation *si) : ValidStateSampler(si)
{
name_ = "my sampler";
}
// Generate a sample in the valid part of the R^3 state space
// Valid states satisfy the following constraints:
// -1<= x,y,z <=1
// if .25 <= z <= .5, then |x|>.8 and |y|>.8
bool sample(ob::State *state) override
{
double* val = static_cast<ob::RealVectorStateSpace::StateType*>(state)->values;
double z = rng_.uniformReal(-1,1);
if (z>.25 && z<.5)
{
double x = rng_.uniformReal(0,1.8), y = rng_.uniformReal(0,.2);
switch(rng_.uniformInt(0,3))
{
case 0: val[0]=x-1; val[1]=y-1;
case 1: val[0]=x-.8; val[1]=y+.8;
case 2: val[0]=y-1; val[1]=x-1;
case 3: val[0]=y+.8; val[1]=x-.8;
}
}
else
{
val[0] = rng_.uniformReal(-1,1);
val[1] = rng_.uniformReal(-1,1);
}
val[2] = z;
assert(si_->isValid(state));
return true;
}
// We don't need this in the example below.
bool sampleNear(ob::State*, const ob::State*, const double) override
{
throw ompl::Exception("MyValidStateSampler::sampleNear", "not implemented");
return false;
}
protected:
ompl::RNG rng_;
};
/// @endcond
// this function is needed, even when we can write a sampler like the one
// above, because we need to check path segments for validity
bool isStateValid(const ob::State *state)
{
const ob::RealVectorStateSpace::StateType& pos = *state->as<ob::RealVectorStateSpace::StateType>();
// Let's pretend that the validity check is computationally relatively
// expensive to emphasize the benefit of explicitly generating valid
// samples
std::this_thread::sleep_for(ompl::time::seconds(.0005));
// Valid states satisfy the following constraints:
// -1<= x,y,z <=1
// if .25 <= z <= .5, then |x|>.8 and |y|>.8
return !(fabs(pos[0])<.8 && fabs(pos[1])<.8 && pos[2]>.25 && pos[2]<.5);
}
// return an obstacle-based sampler
ob::ValidStateSamplerPtr allocOBValidStateSampler(const ob::SpaceInformation *si)
{
// we can perform any additional setup / configuration of a sampler here,
// but there is nothing to tweak in case of the ObstacleBasedValidStateSampler.
return std::make_shared<ob::ObstacleBasedValidStateSampler>(si);
}
// return an instance of my sampler
ob::ValidStateSamplerPtr allocMyValidStateSampler(const ob::SpaceInformation *si)
{
return std::make_shared<MyValidStateSampler>(si);
}
void plan(int samplerIndex)
{
// construct the state space we are planning in
auto space(std::make_shared<ob::RealVectorStateSpace>(3));
// set the bounds
ob::RealVectorBounds bounds(3);
bounds.setLow(-1);
bounds.setHigh(1);
space->setBounds(bounds);
// define a simple setup class
og::SimpleSetup ss(space);
// set state validity checking for this space
ss.setStateValidityChecker(isStateValid);
// create a start state
ob::ScopedState<> start(space);
start[0] = start[1] = start[2] = 0;
// create a goal state
ob::ScopedState<> goal(space);
goal[0] = goal[1] = 0.;
goal[2] = 1;
// set the start and goal states
ss.setStartAndGoalStates(start, goal);
// set sampler (optional; the default is uniform sampling)
if (samplerIndex==1)
// use obstacle-based sampling
ss.getSpaceInformation()->setValidStateSamplerAllocator(allocOBValidStateSampler);
else if (samplerIndex==2)
// use my sampler
ss.getSpaceInformation()->setValidStateSamplerAllocator(allocMyValidStateSampler);
// create a planner for the defined space
auto planner(std::make_shared<og::PRM>(ss.getSpaceInformation()));
ss.setPlanner(planner);
// attempt to solve the problem within ten seconds of planning time
ob::PlannerStatus solved = ss.solve(10.0);
if (solved)
{
std::cout << "Found solution:" << std::endl;
// print the path to screen
ss.getSolutionPath().print(std::cout);
}
else
std::cout << "No solution found" << std::endl;
}
int main(int, char **)
{
std::cout << "Using default uniform sampler:" << std::endl;
plan(0);
std::cout << "\nUsing obstacle-based sampler:" << std::endl;
plan(1);
std::cout << "\nUsing my sampler:" << std::endl;
plan(2);
return 0;
}