Implementation of direct image alignment of two RGBD frames, minimizing photometric and depth error with respect to 6-DOF pose as in DirectIcp and DVO.
- Build image
docker build . -t direct_icp
- Start interactive session with persistent data folder e.g.:
mkdir data
docker run -it --rm -v$(pwd)/data:/opt/direct_icp/data direct_icp
- Follow steps as in Run
- Install dependencies
sudo ./install_dependencies.sh
- Run build script
./build.sh
- Download tum tools:
wget https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/src/rgbd_benchmark_tools/associate.py
wget https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/src/rgbd_benchmark_tools/evaluate_rpe.py
- Download sequence e.g.:
mkdir ./data
cd ./data
wget https://cvg.cit.tum.de/rgbd/dataset/freiburg2/rgbd_dataset_freiburg2_desk.tgz
tar zxvf rgbd_dataset_freiburg2_desk.tgz
- Create association file following here:
python associate.py ./data/rgbd_dataset_freiburg2_desk/depth ./data/rgbd_dataset_freiburg2_desk/rgb > ./data/rgbd_dataset_freiburg2_desk/assoc.txt
./build/main_tum ./data/rgbd_dataset_freiburg2_desk assoc.txt
./build/main_tum ./data/rgbd_dataset_freiburg2_desk assoc.txt > ./trajectory.txt
python evaluate_rpe.py --verbose --fixed_delta ./data/groundtruth.txt trajectory.txt