|
11 | 11 | "cell_type": "markdown",
|
12 | 12 | "metadata": {},
|
13 | 13 | "source": [
|
14 |
| - "In [Tutorial 2](./Tutorial%202%20-%20Compare%20models.ipynb), we made use of PyBaMM's automatic plotting function. This gave a good quick overview of many of the key variables in the model. However, by passing in just a few arguments it is easy to plot any of the many other variables that may be of interest to you. We start by building and solving a model as before:" |
| 14 | + "In [Tutorial 2](./Tutorial%202%20-%20Compare%20models.ipynb), we made use of PyBaMM's automatic plotting function when comparing models. This gave a good quick overview of many of the key variables in the model. However, by passing in just a few arguments it is easy to plot any of the many other variables that may be of interest to you. We start by building and solving a model as before:" |
15 | 15 | ]
|
16 | 16 | },
|
17 | 17 | {
|
18 | 18 | "cell_type": "code",
|
19 |
| - "execution_count": 1, |
| 19 | + "execution_count": 2, |
20 | 20 | "metadata": {},
|
21 | 21 | "outputs": [
|
22 | 22 | {
|
|
29 | 29 | {
|
30 | 30 | "data": {
|
31 | 31 | "text/plain": [
|
32 |
| - "<pybamm.solvers.solution.Solution at 0x7f5a7dda5048>" |
| 32 | + "<pybamm.solvers.solution.Solution at 0x7f58bbcf9470>" |
33 | 33 | ]
|
34 | 34 | },
|
35 |
| - "execution_count": 1, |
| 35 | + "execution_count": 2, |
36 | 36 | "metadata": {},
|
37 | 37 | "output_type": "execute_result"
|
38 | 38 | }
|
|
54 | 54 | },
|
55 | 55 | {
|
56 | 56 | "cell_type": "code",
|
57 |
| - "execution_count": 2, |
| 57 | + "execution_count": 3, |
58 | 58 | "metadata": {},
|
59 | 59 | "outputs": [
|
60 | 60 | {
|
|
179 | 179 | " 'Negative particle concentration [mol.m-3]',\n",
|
180 | 180 | " 'X-averaged negative particle concentration',\n",
|
181 | 181 | " 'X-averaged negative particle concentration [mol.m-3]',\n",
|
| 182 | + " 'R-averaged negative particle concentration',\n", |
| 183 | + " 'R-averaged negative particle concentration [mol.m-3]',\n", |
182 | 184 | " 'Negative particle surface concentration',\n",
|
183 | 185 | " 'Negative particle surface concentration [mol.m-3]',\n",
|
184 | 186 | " 'X-averaged negative particle surface concentration',\n",
|
|
191 | 193 | " 'Positive particle concentration [mol.m-3]',\n",
|
192 | 194 | " 'X-averaged positive particle concentration',\n",
|
193 | 195 | " 'X-averaged positive particle concentration [mol.m-3]',\n",
|
| 196 | + " 'R-averaged positive particle concentration',\n", |
| 197 | + " 'R-averaged positive particle concentration [mol.m-3]',\n", |
194 | 198 | " 'Positive particle surface concentration',\n",
|
195 | 199 | " 'Positive particle surface concentration [mol.m-3]',\n",
|
196 | 200 | " 'X-averaged positive particle surface concentration',\n",
|
|
381 | 385 | " 'X-averaged positive electrode surface potential difference',\n",
|
382 | 386 | " 'Positive electrode surface potential difference [V]',\n",
|
383 | 387 | " 'X-averaged positive electrode surface potential difference [V]',\n",
|
| 388 | + " 'Negative particle distribution in x',\n", |
384 | 389 | " 'Negative particle flux',\n",
|
385 | 390 | " 'X-averaged negative particle flux',\n",
|
386 |
| - " 'Negative particle distribution in x',\n", |
| 391 | + " 'Positive particle distribution in x',\n", |
387 | 392 | " 'Positive particle flux',\n",
|
388 | 393 | " 'X-averaged positive particle flux',\n",
|
389 |
| - " 'Positive particle distribution in x',\n", |
390 | 394 | " 'Negative electrode effective conductivity',\n",
|
391 | 395 | " 'Negative electrode current density',\n",
|
392 | 396 | " 'Negative electrode current density [A.m-2]',\n",
|
|
398 | 402 | " 'Electrolyte current density [A.m-2]',\n",
|
399 | 403 | " 'Ohmic heating',\n",
|
400 | 404 | " 'Ohmic heating [W.m-3]',\n",
|
| 405 | + " 'X-averaged Ohmic heating',\n", |
| 406 | + " 'X-averaged Ohmic heating [W.m-3]',\n", |
| 407 | + " 'Volume-averaged Ohmic heating',\n", |
| 408 | + " 'Volume-averaged Ohmic heating [W.m-3]',\n", |
401 | 409 | " 'Irreversible electrochemical heating',\n",
|
402 | 410 | " 'Irreversible electrochemical heating [W.m-3]',\n",
|
| 411 | + " 'X-averaged irreversible electrochemical heating',\n", |
| 412 | + " 'X-averaged irreversible electrochemical heating [W.m-3]',\n", |
| 413 | + " 'Volume-averaged irreversible electrochemical heating',\n", |
| 414 | + " 'Volume-averaged irreversible electrochemical heating[W.m-3]',\n", |
403 | 415 | " 'Reversible heating',\n",
|
404 | 416 | " 'Reversible heating [W.m-3]',\n",
|
| 417 | + " 'X-averaged reversible heating',\n", |
| 418 | + " 'X-averaged reversible heating [W.m-3]',\n", |
| 419 | + " 'Volume-averaged reversible heating',\n", |
| 420 | + " 'Volume-averaged reversible heating [W.m-3]',\n", |
405 | 421 | " 'Total heating',\n",
|
406 | 422 | " 'Total heating [W.m-3]',\n",
|
407 | 423 | " 'X-averaged total heating',\n",
|
|
416 | 432 | " 'Sei interfacial current density',\n",
|
417 | 433 | " 'Sei interfacial current density [A.m-2]',\n",
|
418 | 434 | " 'Sei interfacial current density per volume [A.m-3]',\n",
|
| 435 | + " 'Negative surface area per unit volume distribution in x',\n", |
| 436 | + " 'Positive surface area per unit volume distribution in x',\n", |
419 | 437 | " 'Negative electrode interfacial current density',\n",
|
420 | 438 | " 'X-averaged negative electrode interfacial current density',\n",
|
421 | 439 | " 'Negative electrode interfacial current density [A.m-2]',\n",
|
|
554 | 572 | " 'Terminal power [W]']"
|
555 | 573 | ]
|
556 | 574 | },
|
557 |
| - "execution_count": 2, |
| 575 | + "execution_count": 3, |
558 | 576 | "metadata": {},
|
559 | 577 | "output_type": "execute_result"
|
560 | 578 | }
|
|
567 | 585 | "cell_type": "markdown",
|
568 | 586 | "metadata": {},
|
569 | 587 | "source": [
|
570 |
| - "You can also search the list of variables for a particular string (e.g. \"electrolyte\")" |
| 588 | + "There are a _lot_ of variables. You can also search the list of variables for a particular string (e.g. \"electrolyte\")" |
571 | 589 | ]
|
572 | 590 | },
|
573 | 591 | {
|
574 | 592 | "cell_type": "code",
|
575 |
| - "execution_count": 3, |
| 593 | + "execution_count": 4, |
576 | 594 | "metadata": {},
|
577 | 595 | "outputs": [
|
578 | 596 | {
|
|
660 | 678 | },
|
661 | 679 | {
|
662 | 680 | "cell_type": "code",
|
663 |
| - "execution_count": 4, |
| 681 | + "execution_count": 5, |
664 | 682 | "metadata": {},
|
665 | 683 | "outputs": [
|
666 | 684 | {
|
667 | 685 | "data": {
|
668 | 686 | "application/vnd.jupyter.widget-view+json": {
|
669 |
| - "model_id": "26530e3fbec34dfa921fda4c1490a8f5", |
| 687 | + "model_id": "500cc762737441e29f10ad74539ab7ca", |
670 | 688 | "version_major": 2,
|
671 | 689 | "version_minor": 0
|
672 | 690 | },
|
|
692 | 710 | },
|
693 | 711 | {
|
694 | 712 | "cell_type": "code",
|
695 |
| - "execution_count": 5, |
| 713 | + "execution_count": 6, |
696 | 714 | "metadata": {},
|
697 | 715 | "outputs": [
|
698 | 716 | {
|
699 | 717 | "data": {
|
700 | 718 | "application/vnd.jupyter.widget-view+json": {
|
701 |
| - "model_id": "d1d16e2c52654cf48e1d3cd398c4ed18", |
| 719 | + "model_id": "cf2959d990cb4fc3a8b540f23601f2a5", |
702 | 720 | "version_major": 2,
|
703 | 721 | "version_minor": 0
|
704 | 722 | },
|
|
724 | 742 | },
|
725 | 743 | {
|
726 | 744 | "cell_type": "code",
|
727 |
| - "execution_count": 6, |
| 745 | + "execution_count": 7, |
728 | 746 | "metadata": {},
|
729 | 747 | "outputs": [
|
730 | 748 | {
|
731 | 749 | "data": {
|
732 | 750 | "application/vnd.jupyter.widget-view+json": {
|
733 |
| - "model_id": "3d08bfd164df409ca3838bb1edd4d4c9", |
| 751 | + "model_id": "7ec90fc467fc4a5aaf48dd137cd88551", |
734 | 752 | "version_major": 2,
|
735 | 753 | "version_minor": 0
|
736 | 754 | },
|
|
748 | 766 | },
|
749 | 767 | {
|
750 | 768 | "cell_type": "code",
|
751 |
| - "execution_count": 7, |
| 769 | + "execution_count": 8, |
752 | 770 | "metadata": {},
|
753 | 771 | "outputs": [
|
754 | 772 | {
|
755 | 773 | "data": {
|
756 | 774 | "application/vnd.jupyter.widget-view+json": {
|
757 |
| - "model_id": "c248e1ccf0c34d53b5f2c0e44115e8d5", |
| 775 | + "model_id": "8ecaf998bb0748cdaea4e350b2bc4b31", |
758 | 776 | "version_major": 2,
|
759 | 777 | "version_minor": 0
|
760 | 778 | },
|
|
776 | 794 | "source": [
|
777 | 795 | "In this tutorial we have seen how to use the plotting functionality in PyBaMM.\n",
|
778 | 796 | "\n",
|
779 |
| - "In [Tutorial 4](./Tutorial%204%20-%20Setting%20parameter%20values.ipynb) we show how to change model options." |
| 797 | + "In [Tutorial 4](./Tutorial%204%20-%20Setting%20parameter%20values.ipynb) we show how to change parameter values." |
780 | 798 | ]
|
| 799 | + }, |
| 800 | + { |
| 801 | + "cell_type": "code", |
| 802 | + "execution_count": null, |
| 803 | + "metadata": {}, |
| 804 | + "outputs": [], |
| 805 | + "source": [] |
781 | 806 | }
|
782 | 807 | ],
|
783 | 808 | "metadata": {
|
|
0 commit comments