Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Casting parameters as float64 silencing tf warnings #1308

Merged
merged 4 commits into from
May 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions doc/source/code-examples/advancedexamples.rst
Original file line number Diff line number Diff line change
Expand Up @@ -702,6 +702,9 @@ the following script optimizes the parameters of two rotations so that the circu
output matches a target state using the fidelity as the corresponding loss
function.

Note that, as in the following example, the rotation angles have to assume real values
to ensure the rotational gates are representing unitary operators.

.. code-block:: python

import qibo
Expand All @@ -716,7 +719,7 @@ function.

# Define circuit ansatz
params = tf.Variable(
tf.random.uniform((2,), dtype=tf.float64).astype(tf.complex128)
tf.random.uniform((2,), dtype=tf.float64)
)
c = models.Circuit(2)
c.add(gates.RX(0, params[0]))
Expand All @@ -729,7 +732,6 @@ function.
fidelity = tf.math.abs(tf.reduce_sum(tf.math.conj(target_state) * final_state))
loss = 1 - fidelity
grads = tape.gradient(loss, params)
grads = tf.math.real(grads)
optimizer.apply_gradients(zip([grads], [params]))


Expand Down Expand Up @@ -763,7 +765,6 @@ For example:
fidelity = tf.math.abs(tf.reduce_sum(tf.math.conj(target_state) * final_state))
loss = 1 - fidelity
grads = tape.gradient(loss, params)
grads = tf.math.real(grads)
optimizer.apply_gradients(zip([grads], [params]))

for _ in range(nepochs):
Expand Down
4 changes: 4 additions & 0 deletions src/qibo/backends/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,13 @@ def __init__(self):
super().__init__()
self.name = "tensorflow"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = str(TF_LOG_LEVEL)

import tensorflow as tf # pylint: disable=import-error
import tensorflow.experimental.numpy as tnp # pylint: disable=import-error

if TF_LOG_LEVEL >= 2:
tf.get_logger().setLevel("ERROR")

tnp.experimental_enable_numpy_behavior()
self.tf = tf
self.np = tnp
Expand Down
4 changes: 2 additions & 2 deletions tests/test_models_circuit_backpropagation.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def test_variable_backpropagation():
backend = construct_tensorflow_backend()
import tensorflow as tf

theta = tf.Variable(0.1234, dtype=tf.complex128)
theta = tf.Variable(0.1234, dtype=tf.float64)
# TODO: Fix parametrized gates so that `Circuit` can be defined outside
# of the gradient tape
with tf.GradientTape() as tape:
Expand All @@ -45,7 +45,7 @@ def test_two_variables_backpropagation():
backend = construct_tensorflow_backend()
import tensorflow as tf

theta = tf.Variable([0.1234, 0.4321], dtype=tf.complex128)
theta = tf.Variable([0.1234, 0.4321], dtype=tf.float64)
# TODO: Fix parametrized gates so that `Circuit` can be defined outside
# of the gradient tape
with tf.GradientTape() as tape:
Expand Down
4 changes: 2 additions & 2 deletions tests/test_models_circuit_parametrized.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,8 +227,8 @@ def test_variable_theta():

import tensorflow as tf # pylint: disable=import-error

theta1 = tf.Variable(0.1234, dtype=tf.complex128)
theta2 = tf.Variable(0.4321, dtype=tf.complex128)
theta1 = tf.Variable(0.1234, dtype=tf.float64)
theta2 = tf.Variable(0.4321, dtype=tf.float64)
cvar = Circuit(2)
cvar.add(gates.RX(0, theta1))
cvar.add(gates.RY(1, theta2))
Expand Down
Loading