Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add total_variation_distance to quantum_info.utils #1452

Merged
merged 9 commits into from
Sep 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions doc/source/api-reference/qibo.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2398,6 +2398,12 @@ Hellinger shot error
.. autofunction:: qibo.quantum_info.hellinger_shot_error


Total variation distance
""""""""""""""""""""""""

.. autofunction:: qibo.quantum_info.total_variation_distance


Haar integral
"""""""""""""

Expand Down
56 changes: 54 additions & 2 deletions src/qibo/quantum_info/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,7 +280,7 @@ def hellinger_fidelity(prob_dist_p, prob_dist_q, validate: bool = False, backend
:class:`qibo.backends.GlobalBackend`. Defaults to ``None``.

Returns:
(float): Hellinger fidelity.
float: Hellinger fidelity.

"""
backend = _check_backend(backend)
Expand Down Expand Up @@ -317,7 +317,7 @@ def hellinger_shot_error(
:class:`qibo.backends.GlobalBackend`. Defaults to ``None``.

Returns:
(float): Hellinger fidelity error.
float: Hellinger fidelity error.

"""
backend = _check_backend(backend)
Expand All @@ -339,6 +339,58 @@ def hellinger_shot_error(
return hellinger_error


def total_variation_distance(
prob_dist_p, prob_dist_q, validate: bool = False, backend=None
):
"""Calculates the total variation distance between two discrete probability distributions.

For probabilities :math:`p` and :math:`q`, the total variation distance is defined as

.. math::
\\operatorname{TVD}(p, q) = \frac{1}{2} \\, \\norm{p - q}_{1}
= \\frac{1}{2} \\, \\sum_{x} \\, \\abs{p(x) - q(x)} \\, ,

where :math:`\\norm{\\cdot}_{1}` detones the :math:`\\ell_{1}`-norm.

Args:
prob_dist_p (ndarray or list): discrete probability distribution :math:`p`.
prob_dist_q (ndarray or list): discrete probability distribution :math:`q`.
validate (bool, optional): if ``True``, checks if :math:`p` and :math:`q` are proper
probability distributions. Defaults to ``False``.
backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be
used in the execution. If ``None``, it uses
:class:`qibo.backends.GlobalBackend`. Defaults to ``None``.

Returns:
float: Total variation distance measure.
"""
backend = _check_backend(backend)

if isinstance(prob_dist_p, list):
prob_dist_p = backend.cast(prob_dist_p, dtype=np.float64)

if isinstance(prob_dist_q, list):
prob_dist_q = backend.cast(prob_dist_q, dtype=np.float64)

if validate:
if (any(prob_dist_p < 0) or any(prob_dist_p > 1.0)) or (
any(prob_dist_q < 0) or any(prob_dist_q > 1.0)
):
raise_error(
ValueError,
"All elements of the probability array must be between 0. and 1..",
)
if backend.np.abs(backend.np.sum(prob_dist_p) - 1.0) > PRECISION_TOL:
raise_error(ValueError, "First probability array must sum to 1.")

if backend.np.abs(backend.np.sum(prob_dist_q) - 1.0) > PRECISION_TOL:
raise_error(ValueError, "Second probability array must sum to 1.")

tvd = backend.calculate_norm(prob_dist_p - prob_dist_q, order=1)

return tvd / 2


def haar_integral(
nqubits: int,
power_t: int,
Expand Down
47 changes: 47 additions & 0 deletions tests/test_quantum_info_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
hellinger_fidelity,
hellinger_shot_error,
pqc_integral,
total_variation_distance,
)


Expand Down Expand Up @@ -212,6 +213,52 @@ def test_hellinger_shot_error(backend, validate, kind):
assert 2 * hellinger_error < hellinger_fid


@pytest.mark.parametrize("kind", [None, list])
@pytest.mark.parametrize("validate", [False, True])
def test_total_variation_distance(backend, validate, kind):
with pytest.raises(ValueError):
prob = np.array([-1, 2.0])
prob_q = np.random.rand(1, 5)[0]
prob = backend.cast(prob, dtype=prob.dtype)
prob_q = backend.cast(prob_q, dtype=prob_q.dtype)
test = total_variation_distance(prob, prob_q, validate=True, backend=backend)
with pytest.raises(ValueError):
prob = np.random.rand(1, 2)[0]
prob_q = np.array([1.0, 0.0])
prob = backend.cast(prob, dtype=prob.dtype)
prob_q = backend.cast(prob_q, dtype=prob_q.dtype)
test = total_variation_distance(prob, prob_q, validate=True, backend=backend)
with pytest.raises(ValueError):
prob = np.array([1.0, 0.0])
prob_q = np.random.rand(1, 2)[0]
prob = backend.cast(prob, dtype=prob.dtype)
prob_q = backend.cast(prob_q, dtype=prob_q.dtype)
test = total_variation_distance(prob, prob_q, validate=True, backend=backend)

prob_p = np.random.rand(10)
prob_q = np.random.rand(10)
prob_p /= np.sum(prob_p)
prob_q /= np.sum(prob_q)
prob_p = backend.cast(prob_p, dtype=prob_p.dtype)
prob_q = backend.cast(prob_q, dtype=prob_q.dtype)

target = float(backend.calculate_norm(prob_p - prob_q, order=1) / 2)

prob_p = (
kind(prob_p) if kind is not None else backend.cast(prob_p, dtype=prob_p.dtype)
)
prob_q = (
kind(prob_q) if kind is not None else backend.cast(prob_q, dtype=prob_q.dtype)
)

tvd = total_variation_distance(prob_p, prob_q, validate, backend)
distance = hellinger_distance(prob_p, prob_q, validate, backend)

assert tvd == target
assert tvd <= np.sqrt(2) * distance
assert tvd >= distance**2


def test_haar_integral_errors(backend):
with pytest.raises(TypeError):
nqubits, power_t, samples = 0.5, 2, 10
Expand Down