Skip to content

Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.

License

Notifications You must be signed in to change notification settings

ray-project/ray

Folders and files

NameName
Last commit message
Last commit date

Latest commit

acda02d · Feb 22, 2025
Feb 21, 2025
Feb 5, 2025
Feb 19, 2025
Feb 17, 2025
Feb 22, 2025
Feb 20, 2025
Feb 21, 2025
Feb 19, 2025
Feb 22, 2025
Feb 22, 2025
Feb 21, 2025
Feb 21, 2025
Apr 18, 2023
Feb 22, 2025
Dec 19, 2024
Feb 14, 2025
Jun 7, 2024
Mar 13, 2022
Dec 24, 2024
Feb 27, 2020
May 24, 2022
Oct 26, 2023
Feb 15, 2025
Jul 8, 2024
Feb 21, 2025
Dec 20, 2023
Jan 25, 2025
Jul 2, 2024
Apr 15, 2024
Feb 21, 2025
Feb 21, 2025
Nov 13, 2023
Feb 12, 2025
Jul 10, 2024
Oct 30, 2024
Jul 10, 2024
Jul 16, 2020
Jun 17, 2020
Feb 10, 2025
Aug 30, 2023
Nov 9, 2023
Feb 10, 2025

Repository files navigation

https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png

https://readthedocs.org/projects/ray/badge/?version=master https://img.shields.io/badge/Ray-Join%20Slack-blue https://img.shields.io/badge/Discuss-Ask%20Questions-blue https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D

Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:

Learn more about Ray AI Libraries:

  • Data: Scalable Datasets for ML
  • Train: Distributed Training
  • Tune: Scalable Hyperparameter Tuning
  • RLlib: Scalable Reinforcement Learning
  • Serve: Scalable and Programmable Serving

Or more about Ray Core and its key abstractions:

  • Tasks: Stateless functions executed in the cluster.
  • Actors: Stateful worker processes created in the cluster.
  • Objects: Immutable values accessible across the cluster.

Learn more about Monitoring and Debugging:

Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing ecosystem of community integrations.

Install Ray with: pip install ray. For nightly wheels, see the Installation page.

Why Ray?

Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.

Ray is a unified way to scale Python and AI applications from a laptop to a cluster.

With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.

More Information

Older documents:

Getting Involved

Platform Purpose Estimated Response Time Support Level
Discourse Forum For discussions about development and questions about usage. < 1 day Community
GitHub Issues For reporting bugs and filing feature requests. < 2 days Ray OSS Team
Slack For collaborating with other Ray users. < 2 days Community
StackOverflow For asking questions about how to use Ray. 3-5 days Community
Meetup Group For learning about Ray projects and best practices. Monthly Ray DevRel
Twitter For staying up-to-date on new features. Daily Ray DevRel