Skip to content

sss2107/Textarena-Hackathon

Repository files navigation

PyPI version Discord Website

TextArena  

TextArena is a flexible and extensible framework for training, evaluating, and benchmarking models in text-based games. It follows an OpenAI Gym-style interface, making it straightforward to integrate with a wide range of reinforcement learning and language model frameworks.


Example

Installation

Install TextArena directly from PyPI:

pip install textarena

Play Offline

Run the following command to set your OpenRouter API key:

export OPENROUTER_API_KEY="YOUR_OPENROUTER_API_KEY"

Then run the following code to play offline:

import textarena as ta

# Initialize agents
agents = {
    0: ta.agents.OpenRouterAgent(model_name="GPT-4o-mini"),
    1: ta.agents.OpenRouterAgent(model_name="anthropic/claude-3.5-haiku"),
}

# Initialize environment from subset and wrap it
env = ta.make(env_id="SpellingBee-v0")
env = ta.wrappers.LLMObservationWrapper(env=env)
env = ta.wrappers.SimpleRenderWrapper(
    env=env,
    player_names={0: "GPT-4o-mini", 1: "claude-3.5-haiku"},
)

env.reset(num_players=len(agents))
done = False
while not done:
    player_id, observation = env.get_observation()
    action = agents[player_id](observation)
    done, info = env.step(action=action)
rewards = env.close()

Play Online

If you want to evaluate your model against other submitted models and humans, you can simply change the .make to .make_online. Please make sure that the model_name is unique and that the email address provided is correct.

import textarena as ta
 
model_name = "Standard GPT-4o LLM"
model_description = "Standard OpenAI GPT-4o model."
email = "guertlerlo@cfar.a-star.edu.sg"


# Initialize agent
agent = ta.agents.OpenRouterAgent(model_name="gpt-4o") 


env = ta.make_online(
    env_id=["SpellingBee-v0", "SimpleNegotiation-v0", "Poker-v0"], 
    model_name=model_name,
    model_description=model_description,
    email=email
)
env = ta.wrappers.LLMObservationWrapper(env=env)


env.reset(num_players=1)

done = False
while not done:
    player_id, observation = env.get_observation()
    action = agent(observation)
    done, info = env.step(action=action)


rewards = env.close()

Implementation Status

Game Players Offline Play Online Play Documentation
CarPuzzle 1
Crosswords 1
FifteenPuzzle 1
GuessTheNumber 1
GuessWho 1
Hangman 1
LogicPuzzle 1
Mastermind 1
MathProof 1
Minesweeper 1
Sudoku 1
TowerOfHanoi 1
TwentyQuestions 1
WordLadder 1
WordSearch 1
Wordle 1
AirLandAndSea † 2
BattleOfSexes ‡ 2
Battleship 2
Brass 2
Breakthrough ¶ 2
Checkers 2
Chess 2
ConnectFour 2
Debate 2
DontSayIt 2
DracoGame ‡ 2
DuopolisticCompetition ‡ 2
EscalationGame ‡ 2
Hive † 2
HotColdGame ‡ 2
IntegrativeDistributiveNegotiation § 2
IteratedPrisonersDilemma 2
Jaipur 2
KuhnPoker ¶ 2
LetterAuction 2
MemoryGame 2
MonopolyGame ‡ 2
Nim ¶ 2
Othello (Reversi) 2
PigDice ¶ 2
PrisonersDilemma ‡ 2
Santorini † 2
ScenarioPlanning 2
SeaBattle † 2
SimpleBlindAuction ¶ 2
SimpleNegotiation 2
SpellingBee 2
SpiteAndMalice 2
StagHunt ‡ 2
Stratego 2
Taboo 2
Tak 2
TicTacToe 2
TriGame ‡ 2
TruthAndDeception 2
UltimateTicTacToe 2
WaitGoGame ‡ 2
WordChains 2
ArcticScavengers † 3+
AreYouTheTraitor † 3+
BlindAuction 3–15
CharacterConclave 3–15
Codenames† 4
LiarsDice 2–15
Negotiation 3–15
Pit † 3+
Poker 2–15
Snake 2–15
Surround 2–15
TwoRoomsAndABoom † 6+
Diplomacy 3–7
7 Wonders 3+
Bohnanza 3+
Codenames 4+
Risk 3+
SettlersOfCatan 2–4
TerraformingMars 1–5
Werewolf 5+

† Games from LLM Arena: Studying the Impact of Domain Expertise and Problem Complexity in LLM Competitions

‡ Games from Language Model Negotiations: Theory-of-Mind vs. Complexity of the Game

§ Games from Negotiating with Humans by LLMs via Strategic Reasoning

¶ These games were added because they are part of Language Models Make Better Players than Solvers in Cooperative Games

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages