Skip to content

The Ruby framework for programming—rather than prompting—language models.

Notifications You must be signed in to change notification settings

vicentereig/dspy.rb

Repository files navigation

DSPy.rb

A Ruby port of the DSPy library, enabling a composable and pipeline-oriented approach to programming with Large Language Models (LLMs) in Ruby.

Current State

DSPy.rb provides a foundation for composable LLM programming with the following implemented features:

  • Signatures: Define input/output schemas for LLM interactions using JSON schemas
  • Predict: Basic LLM completion with structured inputs and outputs
  • Chain of Thought: Enhanced reasoning through step-by-step thinking
  • RAG (Retrieval-Augmented Generation): Enriched responses with context from retrieval
  • Multi-stage Pipelines: Compose multiple LLM calls in a structured workflow

The library currently supports:

Installation

This is not even fresh off the oven. I recommend you installing it straight from this repo, while I build the first release.

gem 'dspy', github: 'vicentereig/dspy.rb'

Usage Examples

Basic Prediction

# Define a signature for sentiment classification
class Classify < DSPy::Signature
  description "Classify sentiment of a given sentence."

  input do
    required(:sentence).value(:string).meta(description: 'The sentence to analyze')
  end

  output do
    required(:sentiment).value(included_in?: %w(positive negative neutral))
      .meta(description: 'The sentiment classification')
    required(:confidence).value(:float).meta(description: 'Confidence score')
  end
end

# Initialize the language model
class SentimentClassifierWithDescriptions < DSPy::Signature
  description "Classify sentiment of a given sentence."

  input do
    required(:sentence)
      .value(:string)
      .meta(description: 'The sentence whose sentiment you are analyzing')
  end

  output do
    required(:sentiment)
      .value(included_in?: [:positive, :negative, :neutral])
      .meta(description: 'The allowed values to classify sentences')

    required(:confidence).value(:float)
                         .meta(description:'The confidence score for the classification')
  end
end
DSPy.configure do |c|
  c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end
# Create the predictor and run inference
classify = DSPy::Predict.new(Classify)
result = classify.call(sentence: "This book was super fun to read, though not the last chapter.")
# => {:confidence=>0.85, :sentence=>"This book was super fun to read, though not the last chapter.", :sentiment=>"positive"}

Chain of Thought Reasoning

class AnswerPredictor < DSPy::Signature
  description "Provides a concise answer to the question"

  input do
    required(:question).value(:string)
  end
  
  output do
    required(:answer).value(:string)
  end
end

DSPy.configure do |c|
  c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end

qa_cot = DSPy::ChainOfThought.new(AnswerPredictor)
response = qa_cot.call(question: "Two dice are tossed. What is the probability that the sum equals two?")
# Result includes reasoning and answer in the response
# {:question=>"...", :answer=>"1/36", :reasoning=>"There is only one way to get a sum of 2..."}

RAG (Retrieval-Augmented Generation)

class ContextualQA < DSPy::Signature
  description "Answers questions using relevant context"
  
  input do
    required(:context).value(Types::Array.of(:string))
    required(:question).filled(:string)
  end

  output do
    required(:response).filled(:string)
  end
end

DSPy.configure do |c|
  c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end

# Set up retriever (example using ColBERT)
retriever = ColBERTv2.new(url: 'http://your-retriever-endpoint')
# Generate a contextual response
rag = DSPy::ChainOfThought.new(ContextualQA)
prediction = rag.call(question: question, context: retriever.call('your query').map(&:long_text))

Multi-stage Pipeline

# Create a pipeline for article drafting
class ArticleDrafter < DSPy::Module
  def initialize
    @build_outline = DSPy::ChainOfThought.new(Outline)
    @draft_section = DSPy::ChainOfThought.new(DraftSection)
  end

  def forward(topic)
    # First build the outline
    outline = @build_outline.call(topic: topic)
    
    # Then draft each section
    sections = []
    (outline[:section_subheadings] || {}).each do |heading, subheadings|
      section = @draft_section.call(
        topic: outline[:title],
        section_heading: "## #{heading}",
        section_subheadings: [subheadings].flatten.map { |sh| "### #{sh}" }
      )
      sections << section
    end

    DraftArticle.new(title: outline[:title], sections: sections)
  end
end

DSPy.configure do |c|
  c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end
# Usage
drafter = ArticleDrafter.new
article = drafter.call("World Cup 2002")

Roadmap

First Release

  • Signatures and Predict module
  • RAG examples
  • Multi-Stage Pipelines
  • Validate inputs and outputs with JSON Schema
  • thread-safe global config
  • Convert responses from hashes to Dry Poros (currently tons of footguns with hashes 🔥)
  • Cover unhappy paths: validation errors
  • Implement ReAct module for reasoning and acting
  • Add OpenTelemetry instrumentation
  • Improve logging
  • Add streaming support (?)
  • Ensure thread safety
  • Comprehensive initial documentation

Backburner

  • Support for multiple LM providers (Anthropic, etc.)
  • Support for reasoning providers
  • Adaptive Graph of Thoughts with Tools

Optimizers

  • Optimizing prompts: RAG
  • Optimizing prompts: Chain of Thought
  • Optimizing prompts: ReAct
  • Optimizing weights: Classification

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE.txt file for details.

About

The Ruby framework for programming—rather than prompting—language models.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages