A Ruby port of the DSPy library, enabling a composable and pipeline-oriented approach to programming with Large Language Models (LLMs) in Ruby.
DSPy.rb provides a foundation for composable LLM programming with the following implemented features:
- Signatures: Define input/output schemas for LLM interactions using JSON schemas
- Predict: Basic LLM completion with structured inputs and outputs
- Chain of Thought: Enhanced reasoning through step-by-step thinking
- RAG (Retrieval-Augmented Generation): Enriched responses with context from retrieval
- Multi-stage Pipelines: Compose multiple LLM calls in a structured workflow
The library currently supports:
- OpenAI and Anthropic via Ruby LLM
- JSON schema validation with dry-schema
This is not even fresh off the oven. I recommend you installing it straight from this repo, while I build the first release.
gem 'dspy', github: 'vicentereig/dspy.rb'
# Define a signature for sentiment classification
class Classify < DSPy::Signature
description "Classify sentiment of a given sentence."
input do
required(:sentence).value(:string).meta(description: 'The sentence to analyze')
end
output do
required(:sentiment).value(included_in?: %w(positive negative neutral))
.meta(description: 'The sentiment classification')
required(:confidence).value(:float).meta(description: 'Confidence score')
end
end
# Initialize the language model
class SentimentClassifierWithDescriptions < DSPy::Signature
description "Classify sentiment of a given sentence."
input do
required(:sentence)
.value(:string)
.meta(description: 'The sentence whose sentiment you are analyzing')
end
output do
required(:sentiment)
.value(included_in?: [:positive, :negative, :neutral])
.meta(description: 'The allowed values to classify sentences')
required(:confidence).value(:float)
.meta(description:'The confidence score for the classification')
end
end
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end
# Create the predictor and run inference
classify = DSPy::Predict.new(Classify)
result = classify.call(sentence: "This book was super fun to read, though not the last chapter.")
# => {:confidence=>0.85, :sentence=>"This book was super fun to read, though not the last chapter.", :sentiment=>"positive"}
class AnswerPredictor < DSPy::Signature
description "Provides a concise answer to the question"
input do
required(:question).value(:string)
end
output do
required(:answer).value(:string)
end
end
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end
qa_cot = DSPy::ChainOfThought.new(AnswerPredictor)
response = qa_cot.call(question: "Two dice are tossed. What is the probability that the sum equals two?")
# Result includes reasoning and answer in the response
# {:question=>"...", :answer=>"1/36", :reasoning=>"There is only one way to get a sum of 2..."}
class ContextualQA < DSPy::Signature
description "Answers questions using relevant context"
input do
required(:context).value(Types::Array.of(:string))
required(:question).filled(:string)
end
output do
required(:response).filled(:string)
end
end
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end
# Set up retriever (example using ColBERT)
retriever = ColBERTv2.new(url: 'http://your-retriever-endpoint')
# Generate a contextual response
rag = DSPy::ChainOfThought.new(ContextualQA)
prediction = rag.call(question: question, context: retriever.call('your query').map(&:long_text))
# Create a pipeline for article drafting
class ArticleDrafter < DSPy::Module
def initialize
@build_outline = DSPy::ChainOfThought.new(Outline)
@draft_section = DSPy::ChainOfThought.new(DraftSection)
end
def forward(topic)
# First build the outline
outline = @build_outline.call(topic: topic)
# Then draft each section
sections = []
(outline[:section_subheadings] || {}).each do |heading, subheadings|
section = @draft_section.call(
topic: outline[:title],
section_heading: "## #{heading}",
section_subheadings: [subheadings].flatten.map { |sh| "### #{sh}" }
)
sections << section
end
DraftArticle.new(title: outline[:title], sections: sections)
end
end
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
end
# Usage
drafter = ArticleDrafter.new
article = drafter.call("World Cup 2002")
- Signatures and Predict module
- RAG examples
- Multi-Stage Pipelines
- Validate inputs and outputs with JSON Schema
- thread-safe global config
- Convert responses from hashes to Dry Poros (currently tons of footguns with hashes 🔥)
- Cover unhappy paths: validation errors
- Implement ReAct module for reasoning and acting
- Add OpenTelemetry instrumentation
- Improve logging
- Add streaming support (?)
- Ensure thread safety
- Comprehensive initial documentation
- Support for multiple LM providers (Anthropic, etc.)
- Support for reasoning providers
- Adaptive Graph of Thoughts with Tools
- Optimizing prompts: RAG
- Optimizing prompts: Chain of Thought
- Optimizing prompts: ReAct
- Optimizing weights: Classification
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE.txt file for details.