Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix biachuan-7b tp #598

Merged
merged 1 commit into from
Aug 1, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 37 additions & 10 deletions vllm/model_executor/models/baichuan.py
Original file line number Diff line number Diff line change
Expand Up @@ -251,32 +251,55 @@ def forward(
return next_tokens

_column_parallel_weights = [
"embed_tokens.weight", "lm_head.weight", "W_pack.weight",
"gate_proj.weight", "up_proj.weight"
"embed_tokens.weight",
"lm_head.weight",
]
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]

def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
tp_world_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()

for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, use_np_cache):
if "rotary_emb.inv_freq" in name:
continue

if "embed_tokens" in name or "lm_head" in name:
# Consider padding in the vocab size.
param = state_dict[name]
padded_vocab_size = param.shape[0] * tp_world_size
num_extra_rows = padded_vocab_size - self.config.vocab_size
extra_rows = torch.empty(num_extra_rows,
loaded_weight.shape[1])
extra_rows = extra_rows.to(loaded_weight)
loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)

if "W_pack" in name:
total_num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
num_heads = total_num_heads // tp_world_size
head_start = tp_rank * num_heads
head_end = (tp_rank + 1) * num_heads

loaded_weight = loaded_weight.view(3, total_num_heads,
head_size, hidden_size)
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
loaded_weight = loaded_weight.reshape(-1, hidden_size)

is_gate_up_weight = False
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
(tp_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
Expand All @@ -287,7 +310,11 @@ def load_weights(self,
continue

param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
load_tensor_parallel_weights(
param,
loaded_weight,
name,
self._column_parallel_weights,
self._row_parallel_weights,
tp_rank,
)