-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
317 lines (285 loc) · 15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
from datetime import datetime
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
import pdb
import sys
import cv2
import yaml
import torch
import random
import importlib
import faulthandler
import numpy as np
import torch.nn as nn
import shutil
import inspect
import time
from collections import OrderedDict
faulthandler.enable()
import utils
from seq_scripts import seq_train, seq_eval
from torch.cuda.amp import autocast as autocast
from utils.misc import *
from slt_network import SignLanguageModel
from Tokenizer import GlossTokenizer_S2G
import warnings
warnings.filterwarnings('ignore', category=UserWarning)
class Processor():
def __init__(self, arg):
self.arg = arg
if self.arg.phase == 'test':
self.arg.work_dir = os.path.join(self.arg.work_dir, str(vars(self.arg)['dataset']))
elif self.arg.load_checkpoints:
self.arg.work_dir = "/".join(self.arg.load_checkpoints.split("/")[-3:-1])
else:
current_time = datetime.now().strftime("%Y%m%d%H%M%S") # 格式: YYYYMMDD_HH (年月日_小时)
# 动态生成带年月日时的 work_dir
self.arg.work_dir = os.path.join(self.arg.work_dir, current_time)
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
if os.path.exists(self.arg.work_dir + '/modules') and os.path.isdir(self.arg.work_dir + '/modules'):
shutil.rmtree(self.arg.work_dir + '/modules')
shutil.copy2('vl_mapper.py', self.arg.work_dir)
shutil.copy2('./configs/baseline.yaml', self.arg.work_dir)
shutil.copytree('./modules', self.arg.work_dir + '/modules')
torch.backends.cudnn.benchmark = True
if type(self.arg.device) is not int:
init_distributed_mode(self.arg)
self.recoder = utils.Recorder(self.arg.work_dir, self.arg.print_log, self.arg.log_interval)
self.save_arg()
if self.arg.random_fix:
self.rng = utils.RandomState(seed=self.arg.random_seed)
self.device = utils.GpuDataParallel()
self.recoder = utils.Recorder(self.arg.work_dir, self.arg.print_log, self.arg.log_interval)
self.dataset = {}
self.data_loader = {}
self.gloss_tokenizer = GlossTokenizer_S2G(self.arg.dataset_info['gloss'])
self.arg.model_args['num_classes'] = len(self.gloss_tokenizer)
self.model, self.optimizer = self.loading()
def start(self):
if self.arg.phase == 'train':
best_dev = {"bleu1": 0.0, "bleu2": 0.0, "bleu3": 0.0, "bleu4": 0.0, "rouge": 0.0}
best_epoch = 0
total_time = 0
epoch_time = 0
seq_model_list = []
for epoch in range(self.arg.optimizer_args['start_epoch'], self.arg.optimizer_args['num_epoch']):
save_model = epoch % self.arg.save_interval == 0
epoch_time = time.time()
seq_train(self.data_loader['train'], self.model, self.optimizer, self.device, epoch, self.recoder)
if is_main_process():
# if save_model:
# model_path = "{}/epoch{}_model.pt".format(self.arg.work_dir, epoch)
# seq_model_list.append(model_path)
# print("seq_model_list", seq_model_list)
# self.save_model(epoch, model_path)
model_path = "{}/checkpoint.pt".format(self.arg.work_dir)
self.save_model(epoch, model_path)
dev_bleu = seq_eval(self.arg, self.data_loader['dev'], self.model, self.device,
'dev', epoch, self.arg.work_dir, self.recoder,
generate_cfg=self.arg.dataset_info['translation'])
# test_bleu = seq_eval(self.arg, self.data_loader['test'], self.model, self.device,
# 'test', epoch, self.arg.work_dir, self.recoder, generate_cfg=self.arg.dataset_info['translation'])
self.recoder.print_log(
'Epoch {} Dev evaluate done. bleu1: {:.4f}, bleu2:{:.4f}, bleu3:{:.4f}, bleu4:{:.4f}, rouge:{:.4f}'.format(
epoch, dev_bleu['bleu1'], dev_bleu['bleu2'], dev_bleu['bleu3'], dev_bleu['bleu4'],
dev_bleu['rouge']))
# self.recoder.print_log('Epoch {} Test evaluate done. bleu1: {:.4f}, bleu2:{:.4f}, bleu3:{:.4f}, bleu4:{:.4f}, rouge:{:.4f}'.format(
# epoch, test_bleu['bleu1'], test_bleu['bleu2'], test_bleu['bleu3'], test_bleu['bleu4'], test_bleu['rouge']))
if dev_bleu['bleu1'] + dev_bleu['bleu2'] + dev_bleu['bleu3'] + dev_bleu['bleu4'] + dev_bleu[
'rouge'] > best_dev['bleu1'] + best_dev['bleu2'] + best_dev['bleu3'] + best_dev['bleu4'] + \
best_dev['rouge']:
best_dev = dev_bleu
best_epoch = epoch
model_path = "{}/best_model.pt".format(self.arg.work_dir)
self.save_model(epoch, model_path)
self.recoder.print_log('Save best model')
self.recoder.print_log(
'Best Epoch {} Dev evaluate done. bleu1: {:.4f}, bleu2:{:.4f}, bleu3:{:.4f}, bleu4:{:.4f}, rouge:{:.4f}'.format(
best_epoch, best_dev['bleu1'], best_dev['bleu2'], best_dev['bleu3'], best_dev['bleu4'],
best_dev['rouge']))
epoch_time = time.time() - epoch_time
total_time += epoch_time
torch.cuda.empty_cache()
self.recoder.print_log(
'Epoch {} costs {} mins {} seconds'.format(epoch, int(epoch_time) // 60, int(epoch_time) % 60))
self.recoder.print_log('Training costs {} hours {} mins {} seconds\n'.format(int(total_time) // 60 // 60,
int(total_time) // 60 % 60,
int(total_time) % 60))
self.recoder.print_log('Training Done.\n')
elif self.arg.phase == 'test' and is_main_process():
if self.arg.load_weights is None and self.arg.load_checkpoints is None:
print('Please appoint --weights.')
self.recoder.print_log('Dataset: {}.'.format(self.arg.dataset))
self.recoder.print_log('Weights: {}.'.format(self.arg.load_weights))
dev_bleu = seq_eval(self.arg, self.data_loader["dev"], self.model, self.device,
"dev", 6667, self.arg.work_dir, self.recoder, self.arg.dataset_info['translation'])
test_bleu = seq_eval(self.arg, self.data_loader["test"], self.model, self.device,
"test", 6667, self.arg.work_dir, self.recoder, self.arg.dataset_info['translation'])
self.recoder.print_log(
'Dev evaluate done. bleu1: {:.4f}, bleu2:{:.4f}, bleu3:{:.4f}, bleu4:{:.4f}, rouge:{:.4f}'.format(
dev_bleu['bleu1'], dev_bleu['bleu2'], dev_bleu['bleu3'], dev_bleu['bleu4'], dev_bleu['rouge']))
self.recoder.print_log(
'Test evaluate done. bleu1: {:.4f}, bleu2:{:.4f}, bleu3:{:.4f}, bleu4:{:.4f}, rouge:{:.4f}'.format(
test_bleu['bleu1'], test_bleu['bleu2'], test_bleu['bleu3'], test_bleu['bleu4'], test_bleu['rouge']))
self.recoder.print_log('Evaluation Done.\n')
def save_arg(self):
arg_dict = vars(self.arg)
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
with open('{}/config.yaml'.format(self.arg.work_dir), 'w') as f:
yaml.dump(arg_dict, f)
def save_model(self, epoch, save_path):
if len(self.device.gpu_list) > 1:
model = self.model.module
else:
model = self.model
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.optimizer.scheduler.state_dict(),
'rng_state': self.rng.save_rng_state(),
}, save_path)
def loading(self):
self.device.set_device(self.arg.device)
print("Loading model")
model = SignLanguageModel(self.arg, self.gloss_tokenizer)
# print(model)
optimizer = utils.Optimizer(model, self.arg.optimizer_args)
if self.arg.load_weights:
self.load_model_weights(model, self.arg.load_weights)
elif self.arg.load_checkpoints:
self.load_checkpoint_weights(model, optimizer)
self.kernel_sizes = model.recognition_network.conv1d.kernel_size
model = self.model_to_device(model)
print("Loading model finished.")
self.load_data()
return model, optimizer
def model_to_device(self, model):
model = model.to(self.device.output_device)
if len(self.device.gpu_list) > 1:
print("using dataparalleling...")
model = nn.SyncBatchNorm.convert_sync_batchnorm(model.to(self.arg.local_rank))
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[self.arg.local_rank])
else:
model.cuda()
# model.cuda()
return model
def load_model_weights(self, model, weight_path):
state_dict = torch.load(weight_path)
if len(self.arg.ignore_weights):
for w in self.arg.ignore_weights:
if state_dict.pop(w, None) is not None:
print('Successfully Remove Weights: {}.'.format(w))
else:
print('Can Not Remove Weights: {}.'.format(w))
weights = self.modified_weights(state_dict['model_state_dict'], False)
s_dict = model.state_dict()
for name in weights:
if name not in s_dict:
print(name)
continue
if s_dict[name].shape == weights[name].shape:
s_dict[name] = weights[name]
model.load_state_dict(s_dict, strict=True)
@staticmethod
def modified_weights(state_dict, modified=False):
state_dict = OrderedDict([(k.replace('.module', ''), v) for k, v in state_dict.items()])
if not modified:
return state_dict
modified_dict = dict()
return modified_dict
def load_checkpoint_weights(self, model, optimizer):
self.load_model_weights(model, self.arg.load_checkpoints)
state_dict = torch.load(self.arg.load_checkpoints)
if len(torch.cuda.get_rng_state_all()) == len(state_dict['rng_state']['cuda']):
print("Loading random seeds...")
self.rng.set_rng_state(state_dict['rng_state'])
if "optimizer_state_dict" in state_dict.keys():
print("Loading optimizer parameters...")
optimizer.load_state_dict(state_dict["optimizer_state_dict"])
optimizer.optimizer.param_groups[0]['capturable']=True
optimizer.to(self.device.output_device)
if "scheduler_state_dict" in state_dict.keys():
print("Loading scheduler parameters...")
optimizer.scheduler.load_state_dict(state_dict["scheduler_state_dict"])
self.arg.optimizer_args['start_epoch'] = state_dict["epoch"] + 1
print()
self.recoder.print_log("Resuming from checkpoint: {}".format(self.arg.load_checkpoints))
self.recoder.print_log("Resuming from checkpoint: epoch {}".format(self.arg.optimizer_args['start_epoch']))
def load_data(self):
print("Loading Dataprocessing")
self.feeder = import_class(self.arg.feeder)
if self.arg.dataset == 'CSL':
dataset_list = zip(["train", "dev"], [True, False])
elif 'phoenix' in self.arg.dataset:
dataset_list = zip(["train", "dev", "test"], [True, False, False])
elif self.arg.dataset == 'CSL-Daily':
dataset_list = zip(["train", "dev", "test"], [True, False, False])
for idx, (mode, train_flag) in enumerate(dataset_list):
arg = self.arg.feeder_args
arg["prefix"] = self.arg.dataset_info['dataset_root']
arg["mode"] = mode.split("_")[0]
arg["transform_mode"] = train_flag
arg["tokenizer"] = self.arg.dataset_info['TranslationNetwork']['TextTokenizer']
arg["gloss_tokenizer"] = self.arg.dataset_info['gloss']
self.dataset[mode] = self.feeder(kernel_size=self.kernel_sizes,
dataset=self.arg.dataset, **arg)
self.data_loader[mode] = self.build_dataloader(self.dataset[mode], mode, train_flag)
print("Loading Dataprocessing finished.")
def init_fn(self, worker_id):
np.random.seed(int(self.arg.random_seed) + worker_id)
def build_dataloader(self, dataset, mode, train_flag):
if len(self.device.gpu_list) > 1:
if train_flag:
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=train_flag)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
batch_size = self.arg.batch_size if mode == "train" else self.arg.test_batch_size
loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
num_workers=self.arg.num_worker,
pin_memory=True,
worker_init_fn=self.init_fn,
)
return loader
else:
return torch.utils.data.DataLoader(
dataset,
batch_size=self.arg.batch_size if mode == "train" else self.arg.test_batch_size,
shuffle=train_flag,
drop_last=train_flag,
num_workers=self.arg.num_worker,
collate_fn=dataset.collate_fn,
pin_memory=True,
worker_init_fn=self.init_fn,
)
def import_class(name):
components = name.rsplit('.', 1)
mod = importlib.import_module(components[0])
mod = getattr(mod, components[1])
return mod
if __name__ == '__main__':
sparser = utils.get_parser()
p = sparser.parse_args()
if p.config is not None:
with open(p.config, 'r') as f:
try:
default_arg = yaml.load(f, Loader=yaml.FullLoader)
except AttributeError:
default_arg = yaml.load(f)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print('WRONG ARG: {}'.format(k))
assert (k in key)
sparser.set_defaults(**default_arg)
args = sparser.parse_args()
with open(f"./configs/{args.dataset}.yaml", 'r') as f:
args.dataset_info = yaml.load(f, Loader=yaml.FullLoader)
processor = Processor(args)
processor.start()