- This project is implemented in Pytorch (>1.8). Thus please install Pytorch first.
- ctcdecode==0.4 [parlance/ctcdecode],for beam search decode.
- For these who failed install ctcdecode (and it always does), you can download ctcdecode here, unzip it, and try
cd ctcdecode
andpip install .
- Pealse follow this link to install pytorch geometric
- You can install other required modules by conducting
pip install -r requirements.txt
pip install transformers
- PHOENIX2014-T datasetDownload the RWTH-PHOENIX-Weather 2014 Dataset [download link]
- CSL dataset: Request the CSL Dataset from this website [download link]
Download datasets and extract them, no further data preprocessing needed.
- mbart_de / mbart_zh : pretrained language models used to initialize the translation network for German and Chinese, with weights from mbart-cc-25.
- We provide pretrained models Phoenix-2014T and CSL-Daily.
Download this directory and place them under pretrained_models,The directory structure is as follows..
|-- pretrained_models
| |-- CSL-Daily
| | `-- best_model.pt #Sign language recognition task weight
| |-- CSL-Daily_g2t
| | `-- step_1000.ckpt #Sign language translation pre-trained weights
| |-- mBart_de
| | |-- config.json
| | |-- gloss2ids.pkl
| | |-- gloss_embeddings.bin
| | |-- map_ids.pkl
| | |-- pytorch_model.bin
| | |-- sentencepiece.bpe.model
| | `-- tokenizer.json
| |-- mBart_zh
| | |-- config.json
| | |-- gloss2ids.pkl
| | |-- gloss_embeddings.bin
| | |-- old2new_vocab.pkl
| | |-- pytorch_model.bin
| | |-- sentence.bpe.model
| | `-- sentencepiece.bpe.model
| |-- phoenix-2014T
| | `-- best_model.pt #Sign language recognition task weight
| `-- phoenix-2014T_g2t
| `-- best.ckpt #Sign language translation pre-trained weights
Here we provide the performance of the model (On Test) and its corresponding weights.
Dataset | Backbone | Rouge | BLEU1 | BLEU2 | BLEU3 | BLEU4 | Pretrained model |
---|---|---|---|---|---|---|---|
Phoenix14T | Resnet34 | 53.01 | 54.85 | 42.28 | 34.24 | 28.68 | [Google Drive] |
CSL-Daily | Resnet34 | 52.86 | 55.87 | 42.22 | 32.70 | 25.90 | [Google Drive] |
To evaluate the pretrained model, choose the dataset from phoenix2014/phoenix2014-T/CSL/CSL-Daily in line 3 in ./config/baseline.yaml first, and run the command below:
python main.py --load-weights path_to_weight.pt --phase test
python main.py --load-weights ./phoenix2014-T/best_model.pt --phase test
python main.py --load-weights ./csl-daily/best_model.pt --phase test
To Training the SignDAGC model, choose the dataset from phoenix2014/phoenix2014-T/CSL/CSL-Daily in line 3 in ./config/baseline.yaml first, and run the command below:
python main.py
Multi-machine training (In fact, the results of the Multi-machine run are not good):
python -m torch.distributed.launch --nproc_per_node=2 main.py --device 0,1