Skip to content
/ ACG Public

PyTorch implementation of Diversified Adversarial Attack based on Conjugate Gradient Method (ICML2022).

License

Notifications You must be signed in to change notification settings

yamamura-k/ACG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diversified Adversarial Attacks based on Conjugate Gradient Method

This is the python implementation of our paper, "Diversified Adversarial Attacks based on Conjugate Gradient Method" , accepted to ICML2022. paper(arxiv)



Environment

Python 3.9.8
PyTorch1.10.0+cu113
gcc gcc version >= 5.4.0
CUDA 11.5


Installation

  • Install python libraries.
pip install -r requirements.txt
  • Complie .cpp and .c codes.
cd src/utils/cluster_coef_c
python setup.py build_ext -i
  • Set ImageNet dataset.
    The directory name is the same as auto-attack

After your download, ls outputs the follow.

storage/ILSVRC2012/ILSVRC2012_img_val_for_ImageFolder/val
  • Downloads the robsust models from RobustBench.
cd src
python get_models.py

Environment Variables

export CUBLAS_WORKSPACE_CONFIG=:4096:8
  • Fix PYTHONHASHSEED to 0.
export PYTHONHASHSEED=0

Dataset

  • ImageNet

    1. cd ../storage/ILSVRC2012
    2. Download ILSVRC2012_img_val.tar and ILSVRC2012_devkit_t12.tar.gz from ImageNet official site
    $ ls
    ILSVRC2012_img_val.tar
    1. mkdir val && tar -xf ILSVRC2012_img_val.tar -C ./val

    2. tar -xzf ILSVRC2012_devkit_t12.tar.gz

    3. python build_dataset.py

Usage

Attack on CIFAR-10

python -B run_cifar10_attack.py -o ../debug -g 0 --log_level 20 --param ./params/robustbench/cifar10/autoconjugate.yaml ./params/robustbench/cifar10/di.yaml  --experiment -bs 10

Attack on ImageNet

python -B run_imagenet_attack.py -o ../debug -g 0 --log_level 20 --param ./params/robustbench/imagenet/autoconjugate.yaml ./params/robustbench/cifar10/di.yaml  --experiment -bs 10

Attack on CIFAR-100

python -B run_cifar100_attack.py  -o ../debug -g 0 --log_level 20 --param ./params/robustbench/cifar100/autoconjugate.yaml ./params/robustbench/cifar10/di.yaml  --experiment -bs 10

Calculate the attack success rates from result dir.

(find ../result/ -maxdepth 7 |grep -e AUTOP -e AUTOC | xargs -L1 -P1 python run_evaluator_from_csv.py -ns 1  -r && find ../result/ -maxdepth 7 |grep AUTOC | xargs -L1 -P1 python run_evaluator_from_csv.py -ns 5 -r ) > cifar10_cw_result.csv

and open cifar10_cw_result.csv

Ding2020MMA,AUTOConjugaterestart-1,WideResNet-28-4,\cite{Ding2019},53.40,Wed Jan 26 10:59:21 2022
Ding2020MMA,AUTOConjugate,WideResNet-28-4,\cite{Ding2019},55.77,Wed Jan 26 10:59:21 2022
  • 1st column: model name listed in RobustBench.
  • 2nd column: the algorithm name.
    AUTOConjugaterestart-1 mean ACG with one restart.
  • 3rd column: the architecture of model
  • 4th column: the citation of the adversarial training method
  • 5th column: the attack success rates
  • 6th column: the execution start time

Docker Usage

Requirements

Command

Build Docker Command

docker build --rm -t autocg:latest .

Create docker instance

docker run -it --gpus all -v $PWD/src:/AutoCG/src autocg /bin/bash

Start created container instance

docker start -ai [ContainerID]

Connect started container

docker attach [ContainerID]

Detach from Container

[control-P] [control-Q]

Citation

@inproceedings{yamamura2022,
    title={Diversified Adversarial Attacks based on Conjugate Gradient Method}, 
    author={Keiichiro Yamamura and Haruki Sato and Nariaki Tateiwa and Nozomi Hata and Toru Mitsutake and Issa Oe and Hiroki Ishikura and Katsuki Fujisawa},
    booktitle={ICML},
    year={2022}
}

About

PyTorch implementation of Diversified Adversarial Attack based on Conjugate Gradient Method (ICML2022).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published