Skip to content

zhuyunqi96/medreportsum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Leveraging Summary Guidance on Medical Report Summarization

Yunqi Zhu, Xuebing Yang, Yuanyuan Wu, Wensheng Zhang

pre-print paper

Download fine-tuned checkpoints through: OneDrive or BaiduPan

  1. generate "ECHO.json", "DISCHARGE.json", "RADIOLOGY.json" to './dataset'
# change line 26 in the file, replace it with the path of your mimic-iii dataset (i.e. csv files).
python dataset_to_json.py
  1. generate "ECHO_indices.json", "ECHO_split.json", etc. to './dataset'
python dataset_split_TrainEvalTest.py
  1. add extoracle for train set for "ECHO_split.json" etc. to './dataset'
python dataset_add_extoracle.py
  1. sampling oracle, reference from train set, to train, eval and test
python dataset_sample_augsum.py
  1. fine-tune BART, T5-large, and BERT2BERT
# (1) set the "sampleprompt" in the config_*.json file as "sampleprom2", if you want to use oracle guidance.
#     as "sampleprom3", if you want to use reference guidance
# (2) if you want to use original bart to fine-tune, set "use_sampleprompt" in the config_*.json file as false
python run_bart.py config_discharge.json
python run_bart.py config_echo.json
python run_bart.py config_radiology.json

# Note that the followings only implemented original fine-tuning on t5-large and bert2bert 
python run_t5.py config_dis_t5.json
python run_t5.py config_echo_t5.json
python run_t5.py config_rad_t5.json
python run_bert2bert.py config_dis_bert2bert.json
python run_bert2bert.py config_echo_bert2bert.json
python run_bert2bert.py config_rad_bert2bert.json

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages